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Abstract. A derivation of Sompolinsky’s result for the long range spin glass is given starting 
from the set of Thouless-Anderson-Palmer (TAP) equations. No replicas are used. To 
describe the system at successive levels of averaging (over successive time scales or 
associated TAP solutions) the method introduces an infinite sequence of fluctuating local 
fields. 

Currently there exist three successful approaches to the solution of the long range 
spin glass proposed by Sherrington and Kirkpatrick (1975). The first is a static approach 
that starts from the spin Hamiltonian and searches for appropriate ansatzes of qap, 
the order parameter in replica space, an approach heralded by Parisi’s replica symmetry 
breaking solution (Parisi 1979). The second approach is the dynamical one of 
Sompolinsky and Zippelius (1981) where the block ansatz in replica space is replaced 
by an ansatz for a time scale hierarchy. Both give identical values for thermodynamic 
quantities (De Dominicis and Young 1983a, b, Sommers 1983a, b). It is still under 
discussion whether the theory describes equilibrium or non-equilibrium properties 
(Houghton etal 1983a, b, De Dominicis and Young 1983a, b, Parisi 1983a, b, Sommers 
1983a, b, Sompolinsky and Zippelius 1983). In between lies the Thouless-Anderson- 
Palmer (TAP) (1977) mean field type approach and it is an interesting question to see 
how TAP equations fit in. These equations are known to possess a large number of 
solutions (Bray and Moore 1980a, b, De Dominicis et al 1980). In particular, to define 
an average over solutions one has to specify which weight is attributed to each solution. 
A canonical weight is known to render this TAP approach equivalent to the initial 
Hamiltonian scheme (De Dominicis and Young 1983a, b). At the end of this article 
and in separate work (De Dominicis et a1 1983), we consider an average with white 
weight over an appropriate window of the solutions. 

Since the solutions of low free energy are highly correlated (Bray and Moore 
1980a, b), Dasgupta and Sompolinsky (1983) chose to introduce an ad hoc distribution 
of overlap between them (the analogue of the time scale hierarchy ansatz) that led 
again to the Sompolinsky free energy. In this paper we wish to follow a distinct way: 
we are going to write TAP equations for successive levels of description. These may 
be interpreted as successive averages over solutions that are accessible within success- 
ively increasing time scales. 
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The model is described by a Hamiltonian of N spins S, interacting via random 
exchange JI, 

We consider the Ising version of the model (Si = k l ) ;  hy are local external fields. The 
JI,  are independent Gaussian random variables, 

The range of validity of the high temperature solution of the SK model is determined 
by the de Almeida-Thouless (1978) line in the he-T plane (hp = he) .  The first attempt 
to treat the problem beyond that is due to TAP. The TAP equations are mean field 
type equations for local magnetisations mi ( p  = 1/ T ) :  

tanh-' mj=Ph: +c PJj,ml-(PJ)'(1-4EA)mi. (3) 
i 

The local field is a sum of external field, Weiss mean field and Onsager reaction field. 
The last term is due to the fact that up to the desired order in 1/N the effect of spin 
Si onto mi has to be subtracted from the local field acting on Si. Here 

is the Edwards-Anderson order parameter. 
Let us rewrite TAP in terms of local fields 

with 

p = PJ2(  1 - 4EA) and m(hi) =tanh(p(h'+h,)). 

One may then compute (Sommers 1978) the probability distribution of the local field 
hi. If one assumes a single solution for (5) one is led to the Sommers solution involving 
the two parameters qEA and the anomaly 

This solution is known to be unstable in the Hamiltonian approach (De Dominicis and 
Garel 1979). From a dynamical point of view it remains stable for short enough times 
but eventually decays (Khurana 1983, Sommers 1983a, b, Sompolinsky and Zippelius 
1983). The time scale hierarchical ansatz suggests to replace (5) by a sequence of 
equations that depend on those parts of the local field which fluctuate on the correspond- 
ing time scale. Namely we write 

hj') =C (Ji j-p6ij)m(o)(hy)),  
i 

hj" =E ( ~ ~ ~ - p a , ) ( m " ) ( h y ) ,  hj'))- m(O)(h(!))) 1 ,  (7) 
i 
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with the requirement 

for R + 03. 

At this stage we assume that the functions m"), m'", m(*) , . . . are given and that 
the set of equations (7) is uniquely soluble. Then we can proceed to calculate the 
probability distribution of the local fields {h$}. 

mlR)(hj0), . . . , h;"') = tanh(P(h"+ hy' +. . .+ hjR') (8) 

It is convenient to consider a more general set of equations 

hq =C (Ji,-pSi,)MP (9) 
i 

where MY are functions of the local fields hp. The probability distribution of h? is 
obtained by averaging over the bond distribution 

where we have introduced a constraint variable &? and anticommuting variables q+a, 
7;. We further introduced the abbreviation 

aMj' = z ( a M , " / a h f ) q f .  
P 

Now we can average Z ,  with respect to Jij: 

+ q T a  a M f q is a MP ) ) ( 1 2 )  

where we have neglected terms which lead to O( 1) corrections inside the integral for 
large N. We can decouple, as usual, the last terms by the Hubbard-Stratonovich 
variables and perform a saddle point integration for large N which means that we 
consistently keep at the mean field level. Then all sites are effectively decoupled and 
we can forget about site indices. We get the mean field equations 

qaP = ( M ~ M ~ ) ,  $4 = -(&"&tp), 
(13) 

g a p  = (i&"MP), nap = ( 

where the brackets are defined with the weight factor in the normalisation integral 
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Consider the solution 

4 " P  = 0, naP = gap, 

which obviously exists with the weight given by (14). The Jacobian, implicit from the 
T + ,  7 integration, allows us to introduce the independent Gaussian variables 

5" = h" + pM"  - J 2  g P " M P  
P 

with the properties 

(5") = 0, (tatP) = J 2 q U P ,  

( ( a / a t " ) M P )  = gap.  (18) 

We see immediately that 2 is normalised to 1. A full consistency proof would require 
a stability analysis. Note the formal analogy to the time dependent formulation of 
Sompolinsky and Zippelius. 

Let us now go back to equation (7) with 

M U  = ma(h(O), h( ' ) ,  . . . , h")  - m"-'(h(O), . . . , ha- ' ) .  (19) 

= 0 for a > p. (20) 

(21) 

(22) 

(23 )  
This leads together with the asymptotic form of mu (for R +a), equation (8) ,  in the 
continuous limit to Sompolinsky's solution (Sompolinsky 1981). 

The choice of the functions mu given by (21) seems to be rather arbitrary. It can 
physically be justified in the following way. Let us start from the TAP equations ( 5 )  

We see then at once from (16) and (18) that g U P  admits generally a triangular solution: 

Assuming for the time being that mu-' is just the average of ma with respect to tu, 
m"-'(h'O', , * . , h-1) = m"(h(O), . . . , h")'=, 

q " P  = s (( ( m " ) 2) - (( m "- 1) *)), 

g a p  = ( a M P / a g u )  = SuP(aMp/&f").  

we then consistently find qaP and gap diagonal: 

hi = E  (J i j -pSi j )  tanh(p(h'+hf)) 
i 

where we have attached a solution index s and for simplicity assumed that p is solution 
independent. Let us assume that we have introduced some kind of dynamics and that 
for large but finite N the system transits for large time from one (almost) solution to 
another. Thus the time development for large times breaks (infinitesimally) the 
symmetry between solutions. With each solution index we can associate a time index 
as well. We measure the time scales by the number of solutions, To, T1,.  . . , which 
are accessible. We divide the largest time scale To into blocks of size 71,  Tl into blocks 
of size T2 and so on, with the relation 

To >> Ti >> T2 >> . . . . (25) 
Thus each time index s can be written as s = (ao,  a,, a 2 , .  . .), indicating which block 
it belongs to on a certain scale ( E a ,  = TIT+ ' ) .  We then may write the local field as 
a sum of contributions which average out on successive levels: 

(26) h; = hj0' + hpo + hP"1 + h y l a 2  +. . . . 
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Averaging the TAP equations (24) on successive levels we get 

We see that we approximate in this,way a certain solution hf of the TAP equations by 
a sequence of the type we have already considered. In addition, calculating the joint 
probability of hs, we can show that under condition (25) we can replace the sums over 
blocks on the right-hand side of (27) by averages over the resulting probability law 
just as we did in (21). Another way to get the same result is starting only from the 
last equation of (27) which is just (24). Assuming that the solution symmetry is broken 
in some infinitesimal way (in order to avoid replicas!) we can solve the resulting 
correlations gss', qss' by Parisi-like block structures of size To, TI,. . . . This leads to 
the same result as mentioned above, and corresponds to a (truncated) white average 
over solutions. Details will be published elsewhere. 

To summarise, we have shown that starting from TAP equations, one may recover 
Sompolinsky's solution, provided one introduces to describe the system a sequence of 
fluctuating local fields. These local fields can be irrespectively associated with either 
time scales or with solutions accessible within those time scales. Sompolinsky's free 
energy is then written in terms of a sequence of magnetisations at an increasing level 
of averaging (over time scales or associated solutions) depending upon a decreasing 
number of fluctuating local fields. 
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